会生出以下结果 -,前四轮他们不仅仅全胜领跑

作者:必赢体育官方

必赢体育 1

使用Ruby来处理JSON的简单教程,ruby处理json教程

环境配置

在使用 Ruby 编码或解码 JSON 数据前,我们需要先安装 Ruby JSON 模块。在安装该模块前你需要先安装 Ruby gem,我们使用 Ruby gem 安装 JSON 模块。 但是,如果你使用的是最新版本的 Ruby,可能已经安装了 gem,解析来我们就可以使用以下命令来安装Ruby JSON 模块:

$gem install json

使用 Ruby 解析 JSON

以下为JSON数据,将该数据存储在 input.json 文件中:

{
 "President": "Alan Isaac",
 "CEO": "David Richardson",

 "India": [
  "Sachin Tendulkar",
  "Virender Sehwag",
  "Gautam Gambhir",
 ],

 "Srilanka": [
  "Lasith Malinga",
  "Angelo Mathews",
  "Kumar Sangakkara"
 ],

 "England": [
  "Alastair Cook",
  "Jonathan Trott",
  "Kevin Pietersen"
 ]
}

以下的 Ruby 程序用于解析以上 JSON 文件;

#!/usr/bin/ruby
require 'rubygems'
require 'json'
require 'pp'

json = File.read('input.json')
obj = JSON.parse(json)

pp obj

以上实例执行结果为:

{"President"=>"Alan Isaac",
 "CEO"=>"David Richardson",

 "India"=>
 ["Sachin Tendulkar", "Virender Sehwag", "Gautam Gambhir"],

"Srilanka"=>
 ["Lasith Malinga ", "Angelo Mathews", "Kumar Sangakkara"],

 "England"=>
 ["Alastair Cook", "Jonathan Trott", "Kevin Pietersen"]
}

环境配置 在使用 Ruby 编码或解码 JSON 数据前,我们需要先安装 Ruby JSON 模块。在安装该模块...

数据帧是一个表或二维类似数组的结构,其中每列包含一个变量的值,每行包含来自每一列的一组值。

北京时间上周末,中甲联赛结束了第四轮争夺,以下为官方公布的本轮以及前四轮相关数据,本轮上座率最高的是重庆德比,有7000多人,在公平竞赛积分榜上建业也是高居榜首,前四轮他们不仅全胜领跑,进球数也是第一位。以下为详细数据。 < 上一页123 下一页 > 阅读全文

以下是数据帧的特征 -

  • 列名称应该不为空。
  • 行名称应该是唯一的。
  • 存储在数据帧中的数据可以是数字,因子或字符类型。
  • 每列应包含相同数量的数据项。

创建数据帧

# Create the data frame.
emp.data <- data.frame(
   emp_id = c (1:5),
   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
   salary = c(623.3,515.2,611.0,729.0,843.25),

   start_date = as.Date(c("2017-01-01", "2017-09-23", "2017-11-15", "2017-05-11",
      "2018-03-27")),
   stringsAsFactors = FALSE
)
# Print the data frame.
print(emp.data)

当我们执行上述代码时,会产生以下结果 -

  emp_id emp_name salary start_date
1      1     Rick 623.30 2017-01-01
2      2      Dan 515.20 2017-09-23
3      3 Michelle 611.00 2017-11-15
4      4     Ryan 729.00 2017-05-11
5      5     Gary 843.25 2018-03-27

获取数据帧的结构

通过使用str()函数可以查看数据帧的结构,参考以下代码实现 -

# Create the data frame.
emp.data <- data.frame(
   emp_id = c (1:5),
   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
   salary = c(623.3,515.2,611.0,729.0,843.25),

   start_date = as.Date(c("2017-01-01", "2017-09-23", "2017-11-15", "2017-05-11",
      "2018-03-27")),
   stringsAsFactors = FALSE
)
# Get the structure of the data frame.
str(emp.data)

当我们执行上述代码时,会产生以下结果 -

'data.frame':   5 obs. of  4 variables:
 $ emp_id    : int  1 2 3 4 5
 $ emp_name  : chr  "Rick" "Dan" "Michelle" "Ryan" ...
 $ salary    : num  623 515 611 729 843
 $ start_date: Date, format: "2017-01-01" "2017-09-23" ...

数据帧数据摘要

数据的统计摘要和性质可以通过应用summary()函数获得。

# Create the data frame.
emp.data <- data.frame(
   emp_id = c (1:5),
   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
   salary = c(623.3,515.2,611.0,729.0,843.25),

   start_date = as.Date(c("2015-01-01", "2016-09-23", "2017-11-15", "2018-05-11",
      "2018-03-27")),
   stringsAsFactors = FALSE
)
# Print the summary.

当我们执行上述代码时,会产生以下结果 -

     emp_id    emp_name             salary        start_date
 Min.   :1   Length:5           Min.   :515.2   Min.   :2015-01-01
 1st Qu.:2   Class :character   1st Qu.:611.0   1st Qu.:2016-09-23
 Median :3   Mode  :character   Median :623.3   Median :2017-11-15
 Mean   :3                      Mean   :664.4   Mean   :2017-03-28
 3rd Qu.:4                      3rd Qu.:729.0   3rd Qu.:2018-03-27
 Max.   :5                      Max.   :843.2   Max.   :2018-05-11

从数据帧提取数据

使用列名称从数据帧中提取特定列。

# Create the data frame.
emp.data <- data.frame(
   emp_id = c (1:5),
   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
   salary = c(623.3,515.2,611.0,729.0,843.25),

   start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-11",
      "2015-03-27")),
   stringsAsFactors = FALSE
)
# Extract Specific columns.
result <- data.frame(emp.data$emp_name,emp.data$salary)
print(result)

当我们执行上述代码时,会产生以下结果 -

  emp.data.emp_name emp.data.salary
1              Rick          623.30
2               Dan          515.20
3          Michelle          611.00
4              Ryan          729.00
5              Gary          843.25

提取前两行,然后提取所有列 -

# Create the data frame.
emp.data <- data.frame(
   emp_id = c (1:5),
   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
   salary = c(623.3,515.2,611.0,729.0,843.25),

   start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
      "2015-03-27")),
   stringsAsFactors = FALSE
)
# Extract first two rows.
result <- emp.data[1:2,]
print(result)

当我们执行上述代码时,会产生以下结果 -

  emp_id    emp_name   salary    start_date
1      1     Rick      623.3     2012-01-01
2      2     Dan       515.2     2013-09-23

提取第2列和第4列和第3行和第5列

# Create the data frame.
emp.data <- data.frame(
   emp_id = c (1:5),
   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
   sary = c(623.3,515.2,611.0,729.0,843.25),

    start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
      "2015-03-27")),
   stringsAsFactors = FALSE
)

# Extract 3rd and 5th row with 2nd and 4th column.
result <- emp.data[c(3,5),c(2,4)]
print(result)

当我们执行上述代码时,会产生以下结果 -

  emp_name start_date
3 Michelle 2014-11-15
5     Gary 2015-03-27

扩展数据帧

可以通过添加列和行来扩展数据帧。

添加列

只需使用新的列名来添加列向量。参考以下示例代码 -

# Create the data frame.
emp.data <- data.frame(
   emp_id = c (1:5),
   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
   salary = c(623.3,515.2,611.0,729.0,843.25),

   start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
      "2015-03-27")),
   stringsAsFactors = FALSE
)

# Add the "dept" coulmn.
emp.data$dept <- c("IT","Operations","IT","HR","Finance")
v <- emp.data
print(v)

必赢体育,当我们执行上述代码时,会产生以下结果 -

  emp_id   emp_name    salary    start_date       dept
1     1    Rick        623.30    2012-01-01       IT
2     2    Dan         515.20    2013-09-23       Operations
3     3    Michelle    611.00    2014-11-15       IT
4     4    Ryan        729.00    2014-05-11       HR
5     5    Gary        843.25    2015-03-27       Finance

添加行

要将更多行永久添加到现有数据帧,需要使用与现有数据帧相同结构的新行,并使用rbind()函数。

在下面的示例中,我们使用新行创建一个数据帧,并将其与现有的数据帧进行合并,以创建最终的数据帧。

# Create the first data frame.
emp.data <- data.frame(
   emp_id = c (1:5),
   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
   salary = c(623.3,515.2,611.0,729.0,843.25),

   start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
      "2015-03-27")),
   dept = c("IT","Operations","IT","HR","Finance"),
   stringsAsFactors = FALSE
)

# Create the second data frame
emp.newdata <-     data.frame(
   emp_id = c (6:8),
   emp_name = c("Rasmi","Pranab","Tusar"),
   salary = c(578.0,722.5,632.8),
   start_date = as.Date(c("2013-05-21","2013-07-30","2014-06-17")),
   dept = c("IT","Operations","Fianance"),
   stringsAsFactors = FALSE
)

# Bind the two data frames.
emp.finaldata <- rbind(emp.data,emp.newdata)
print(emp.finaldata)

当我们执行上述代码时,会产生以下结果 -

  emp_id     emp_name    salary     start_date       dept
1      1     Rick        623.30     2012-01-01       IT
2      2     Dan         515.20     2013-09-23       Operations
3      3     Michelle    611.00     2014-11-15       IT
4      4     Ryan        729.00     2014-05-11       HR
5      5     Gary        843.25     2015-03-27       Finance
6      6     Rasmi       578.00     2013-05-21       IT
7      7     Pranab      722.50     2013-07-30       Operations
8      8     Tusar       632.80     2014-06-17       Fianance

本文由必赢体育发布,转载请注明来源

关键词: